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Issues

Avalilability of Fossil Fuel
Energy Security
Economics

CO, emissions and Global Warming



O1l Supply Cost Curve

Availability of oil resources as a function of economic price
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Global Fuel Reserves
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Source: John F. Bookout (President of Shell USA) ,“Two Centuries of
Fossil Fuel Energy”

International Geological Congress, Washington DC; July 10,1985.
Episodes, vol 12, 257-262 (1989).

Source: BP Statistical Review of World Energy (2005)




Emissions and Energy 1980-2004
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Population-Energy
Equation

Power = N x (GDP/N) X
(Watts/GDP)

C Emission Rate
= Power x (Carbon/J)

Hoffert et al., Nature (1998)
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Emissions Trajectories for atmospheric
CO, concentration ceilings
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Source: Fourth Assessment of the Intergovernmental Panel on

Climate Change; Summary for Policy Makers, February 2007.
Steve Chu, LBL



Annual Primary Energy Demand
1971-2003
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Annud population gowh  (percent)

Annual Population Growth (Percent)
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Demographics 2000-2050

e 47% population growth from now till 2050

e Increase in the next 50 years will be more than twice the
population of China

e Less developed countries will grow 58%. Developed
countries will grow 2%.

e Less developed countries will account for 99% of

Increment in world population












Economic Development & Energy Use

energy demand and GDP per capita (1980-2004)
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COzemissions per capita (tCO:z)
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Global Energy Supply & Demand
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14Mboe/d Power Generation

5Mboe/d
45Mboe/d
Biomass
Buildings
23Mboe/d
Coal
43Mboe/d
56Mboe/d
)
38Mboe/d . Transportation

Qil

—

63Mboe/d

Source: World Energy Outlock 2004 37Mboe/d

Ref: Steve Koonin (BP) Presentation



Primary Energy (2005)
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US Supply Side
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US Energy Supply Since 1850
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Average Eerngy Use per Unit Sold (kWh per year)

U.S. Refrigerator Energy Use vs. Time

United States Refrigerator Use v. Time
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US Electricity Use of Refrigerators and
Freezers compared to sources of electricity
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Buildings Matter

Buildings construction/renovation contributed 9.5% to US GDP and employs
approximately 8 million people. Buildings’ utility bills totaled $370 Billion in 2005.

Buildings use 72% of nation’s electricity and 55% of its natural gas. l

ndustry’
32% Building

AN
40%

Transportation
28%

22% Residential —

18% Commercial —

I Computers 1%

I Cooking 5%

I Electronics 7%

I Wet Clean 5%

I Refrigeration 8%

I Cooling 12%

I Lights 11%

I Water Heat 12%

P Heating 31%
| I Other 4%

I Cooking 2%
I Computers 3%
W Refrigeration 4%
I office Equipment 6%
I Ventilation 6%
I Water Heat 7%
I Cooling 13%
I Heating 14%
I Lights 26%

I Other 13%

Source: Buildings Energy Data Book 2007



Energy Efficiency Offers Low or No-
Cost Carbon Reduction Ontions

Global cost curve for greenhouse gas abatement measures beyond ‘business as usual’; greenhouse gases measured in GtCOze!

¢ Approximate abatement required
beyond ‘business as usual,” 2030
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Building insulation

IGtCO, e = gigaton of carbon dioxide equivalent; “business as usual™ based on emissions growth driven mainly by increasing
demand for energy and transport around the world and by tropical deforestation.

2tCO,e = ton of carbon dioxide equivalent.

3Measures costing more than €40 a ton were not the focus of this study.

4 Atmospheric concentration of all greenhouse gases recalculated into CO, equivalents; ppm = parts per million.

SMarginal cost of avoiding emissions of 1 ton of CO, equivalents in each abatement demand scenario.
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Source: McKinsey Global Institute, 2007



Energy Efficiency has Great Potential

Site EUI
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(MJ/m?-yr)
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High Performance Buildings Research &
Implementation Center (HiPerBRIC)

National Labs-Industrial Consortium-University Partnership



Gaps & Opportunities

» Systems approach for integrating
components and optimizing for energy
use & cost

>

* Major advances in
components

* Limited deployment in
systems » Market understanding and stakeholder

e.g. Research involvement (private/public

partnership)

O

®

®
T

« Social equity, health, comfort,
productivity issues

Depth

* Incremental change on
existing technology

+ Tighten standards; tune up
& retrofit programs

Shallow e.g. ESCOs

>

Narrow Breadth Wide
How widely are they deployed?

How deep are the reductions in energy

consumption?

* Incremental and component level research programs are unlikely to “solve”
the problem, i.e. produce the changes in energy use needed.

* Problem too large to be attacked by a single entity



System of Systems
Integrated Whole Building Approach

Windows & HVAC
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Commercial Buildings Market Fragmentation

Technical Input on Energy

/Architects &
Engineers
* Aesthetic & (. )
Technical Design Developer Property Management
* Providing Specs Firms
* Financing  Buy Portfolio of
Materials & Systems \ Operating J Companies
Supplier
* HVAC Market Demand on
« Lighting Energy Efficiency?
\-Building Materials / / \
Tenants

* Lease space from
Developer or Property
Manager

* Professional firms, retailers,
multinational corps...

o /

Market Demand on Energy Efficiency?

Construction Firms
» Construct the
building




Possible Solutions

Make energy consumption visible to everyone
- Find out where the leaks are - reduce liability risks

- Sufficient granularity so that tenants and property manager can see the impact of their
actions. Property managers can use tenant-level energy billing

Energy Performance Standards

- Based on measured performance, not designed performance
e Key to corrective action, reduced liability risk, .....

- Account for climate and type of building
- Move standards to lower energy consumption in future

Price Signal
- Performance below standard =» cost of carbon, etc...
- Performance above standard = financial incentives

Who wins and who loses
- Shared benefits and costs between tenants and building owners
- Allow owner to market space at higher rates for reduced operating costs

- Mechanisms to ensure that efficiency investments are fully recouped at time of sale of
used buildings

Lifecycle accounting codes
- Combine capital cost with operating costs

Ratings, Public Campaign



Envelop
Structure

HVAC

Lighting

Windows

Facade

Electrical
Microgrid

Electrical
Storage

Thermal
Storage

Building Owners,
Contractors, Architects
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Discharge Time vs Power Capacity
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Energy Conversion

Photovoltaics

Electricity ﬂ

Photosynthesis7 Light
Photoeatalysis

Lighting

( Fuel Cell
Fuel
Electrocatalygsis
EmissigR_Absorption .
- )2 0O
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Heat Mechanical
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Building Energy Demand Challenge:
End Use Energy Consumption

Buildings consume 39% of total U.S. energy
» 71% of electricity and 54% of natural gas

Transportation

21% Residential -

18% Commercial -

"I Computers 1%
B Cooking 5%
B Flectronics 5%
I wash 5%
I Refrigeration 9% €———
N Cooling 10% €——
I ( ights 12%
I Water Heat 13% €
N Heating 32%
LI Other 4%

- Cooking 2%

I Computers 3%

I Refrigeration 4%

I office Equipment 7%

I Ventilation 7%

I Water Heat 7% €4————
I Cooling 13% €
I Heating 16% ¢———
I Lights 28%

I Other 10%




Thermoelectricity & Energy Conversion
Tl T2
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History

Venkatasubramanian et al. Nature 413, 597 (2001)

Harman et al., Science 297, 2229 (2002)
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hermal Conductivity of ErAs: InGaAs
Nanocomposites
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Electroless Etched Si Nanowires

Nature (2008)
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Energy Conversion
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Solar Thermal

Traditional Approach
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Solar Thermal Fuel
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R&D (billion 2002$s)

Federal R&D Investments, 1955 - 2004
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Margolis & Kammen, Science, 1999



